Internationally indexed journal

Indexed in Chemical Abstract Services (USA), Index copernicus, Ulrichs Directory of Periodicals, Google scholar, CABI, DOAJ, PJOAR, EBSCO, Open J gate, Proquest, SCOPUS, EMBASE, etc.

Rapid and Easy Publishing

The "International Journal of Pharma and Bio Sciences" (IJPBS) is an international journal in English published quarterly. The aim of IJPBS is to publish peer reviewed research and review articles rapidly without delay in the developing field of pharmaceutical and biological sciences.

Indexed in Elsevier Bibliographic Database (Scopus and EMBASE)

SCImago Journal Rank 0.129
Impact factor 0.67*

*Instruction to Authors visit www.ijpbs.net

For any Queries, visit “contact” of www.ijpbs.net
THERAPEUTIC POTENTIAL OF JAGGERY AGAINST SILICA NANOPARTICLES INDUCED TOXIC MANIFESTATIONS IN SPRAGUE-DAWLEY RATS

SUCHITA RAGHUVANSHI AND SANGEETA SHUKLA*

Reproductive Biology and Toxicology Laboratory,
School of Studies in Zoology, Jiwaji University, Gwalior-474011

ABSTRACT

The protective effects of aqueous extract of Jaggery were evaluated against silica nanoparticles (SNPs) induced toxic manifestations in liver, kidney and lung tissues. Male albino rats were orally treated with Jaggery (400 and 800 mg/kg) for 7 days, after intraperitoneal administration of SNPs (50 mg/kg) for 6 weeks. SNPs administration significantly increased the levels of serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, serum alkaline phosphatase, urea, uric acid, creatinine and lipid peroxidation level in tissues, whereas substantial decreases were observed in levels of glutathione, alkaline phosphatase, glucose-6-phosphatase, superoxide dismutase, catalase enzymatic activities in liver, kidney & lung and albumin level in serum. Treatment of Jaggery has shown significantly restoration in the studied parameters toward normal value. Thus, Jaggery can be used to reduce tissues toxicity and may serve as an alternative medicine in the treatment of hepatic, renal and pulmonary tissues etiology.

KEYWORDS: Silica nanoparticles, Jaggery, Superoxide dismutase, Glutathione and Catalase

SANGEETA SHUKLA
Reproductive Biology and Toxicology Laboratory, School of Studies in Zoology, Jiwaji University, Gwalior-474011

*Corresponding author
INTRODUCTION

Recent progress in nanotechnology increases the use of nano-sized silica (SiO$_2$) as a promising material. Silica nanoparticles (SNPs) have been found extensive applications in biomedical and biotechnological fields such as medical diagnostics, gene therapy, biomolecules detection, bioimaging, DNA and drug delivery$^{1-2}$. Due to the widespread application of SNPs, exposure in humans may occur via inhalation, ingestion, dermal penetration and injection3. Inhaled ambient ultrafine particles can be found in heart, bone marrow, liver, kidney and even central nervous system. SNPs exposure is associated with different disorders including systemic sclerosis, emphysema, rheumatoid arthritis, dermatomyositis, glomerulonephritis, vasculitis and cardiovascular disease4, while certain crystalline silica polymorphs may cause silicosis and lung cancer5. LD$_{50}$ (Lethal dose) of silica through intraperitoneal route is 400 mg/kg of body weight6. Numerous previous studies on nanoparticles toxicity reported that oxidative stress is one of the most important toxicity mechanisms related to exposure to nanoparticles7. SNPs can reportedly cause inflammatory responses, hepatotoxicity as well as fibrosis8. Despite the development of several therapies against SiO$_2$ toxicity (including whole-lung lavage, steroids, tetrandrine drugs and aluminium powder inhalation)9, none can reverse or slow the disease process. Novel approaches for the prevention and treatment of silica-induced toxicity are needed. In recent years, plant and plant products have been the main focus in the search for nutraceuticals to combat oxidative stress induced diseases. Jaggery is a traditional unrefined non-centrifugal sugar made from sugarcane juice ($Saccharum$ officinarum) which is widely consumed in Asia, Africa, Latin America and the Caribbean. It contains an enormous polyphenols, carotene, protein, carbohydrate, vitamins and minerals. It has also been prescribed in various diseases like jaundice, breathlessness and kidney problems10. Jaggery possesses a variety of pharmacological properties such as anti-inflammatory, antioxidant, anticarcinogenic and cytoprotective11. Previous studies have revealed that Jaggery has remarkable beneficial effect on pulmonary system against environmental toxicants12. Jaggery can counter the genotoxic effects induced by arsenic in vivo13. Earlier studies on Jaggery showed that Jaggery feeding helps to improve the body defence mechanism and does not appear to have any negative toxicological effects14. Thus, the present study was undertaken to evaluate the therapeutic efficacy of Jaggery against silica nanoparticles induced toxic manifestations.

MATERIALS AND METHODS

(i) Chemicals and Drugs
Silica nanoparticles (10-20nm) were obtained from Sigma-Aldrich (USA). All chemicals were procured from Sigma-Aldrich (USA), E-Merck (Germany), Ranbaxy Pvt. Ltd. and BDH Company (India). Loaves of Jaggery were procured from an authentic dealer (Sai Nath Broker, Dabra) Gwalior, Madhya Pradesh (India).

(ii) Preparation of Doses and Treatments
The silica nanoparticles were administered at a dose of 50 mg/kg, i.p. with vehicle (normal saline, 0.9%)15. Aqueous suspension of Jaggery (400 and 800 mg/kg, p.o.) was prepared in gum acacia (1%)16.

(iii) Maintenance of Animals and their Feeding
Adult male albino rats of Sprague–Dawley strain (180±10 g body weight) were selected from departmental animal facility where they were housed in polypropylene cages under uniform husbandry conditions (25 ± 2°C temp, 60-70% relative humidity, 12 h photoperiod). Animals were fed on commercially available standard animal diet (Pranav Agro Industries Ltd., New Delhi, India) and drinking water ad libitum. The experimental protocol was approved by Institutional Animal Ethical Committee for the Purpose of Control and Supervision of
Experiments on Animals (CPCSEA/501/01/A), India.

(iv) Experiment Design
Thirty adult male rats were divided into five groups of six animals each. The animals were administered SNPs at the dose of 50 mg/kg, i.p. for 6 weeks followed by different doses of Jaggery (400 and 800 mg/kg, p.o.) after 24h of toxicant administration for 7 days. Jaggery per se group was administered at the dose of 800 mg/kg orally.
- Group I: Control (Vehicle only).
- Group II: Jaggery Per se (800 mg/kg, orally for 7 days).
- Group III: SNPs (50 mg/kg, i.p.) for 6 weeks.
- Group IV: SNPs (as in group III)+ Jaggery (400 mg/kg, p.o. for 7 days).
- Group V: SNPs (as in group III)+Jaggery (800 mg/kg, p.o. for 7 days).

(v) Processing Samples for Biochemical Analysis
Twenty four hours after the last treatments, blood was collected by puncturing the retro-orbital venous sinus (retro-orbital plexus) under mild anesthesia. Blood was allowed to clot for 30 min at room temperature, and then the clot was gently detached from the wall of the test tube with the help of very thin sterilized needle. The test tubes were centrifuged for 20 minutes at 554×g to harvest serum, which was stored at -20 °C until analysis. For other assays, the tissues were homogenized with a Remi Motor homogenizer (RQ-122) using a glass tube and a Teflon pestle, in different media according to the variable tested. Liver tissue homogenates (10% w/v 0.15 M KCl) were prepared for lipid peroxidation. Homogenates (5% w/v) were prepared in 0.25 M sucrose solution for the estimation of reduced glutathione, and homogenates (5% w/v) were prepared in hypotonic solution (0.008% NaHCO₃) for enzymatic assay.

(vi) Blood Biochemical Assay
Various blood biochemical parameters were measured, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT), serum alkaline phosphatase (SALP), lactate dehydrogenase (LDH), urea, uric acid, creatinine and albumin were assessed by kit methods as per instructions provided by the company (E-Merck, Germany).

(vii) Tissue Biochemical Assay
Lipid peroxidation (LPO) was determined by measuring thiobarbituric acid reactive substances (TBARS) in liver, kidney and lung. Reduced glutathione (GSH) level was determined by dithionitro benzoic acid (DTNB) in liver, kidney and lung. Superoxide dismutase (SOD), catalase and alkaline phosphatase (ALPase) activities were also determined in liver, kidney and lung tissues. Glucose-6-phosphatase (G-6-Pase) in liver tissue was also determined.

(viii) Statistical Analysis
Results are presented as mean ± S.E.M. of six animals used in each group. Data were subjected to statistical analysis through one-way analysis of variance (ANOVA) taking significant at 5% level of probability followed by Student's t-test taking significant at P ≤ 0.05.

RESULTS

1. Blood Biochemical Assay
Administration of SNPs induced significant increase in the enzymatic activities of ALT, AST, LDH and SALP (P ≤ 0.05) as compared to the control group. Oral administration of Jaggery at two different doses (400 and 800 mg/kg, p.o.) showed significant recoupment in a dose dependent manner (P ≤ 0.05) (Table 1). Significant elevation was observed in urea, uric acid, creatinine and decline in albumin after silica intoxication. Treatment with Jaggery at two different doses significantly reversed their level towards control. The 800 mg/kg dose of Jaggery revealed more significant therapeutic effectiveness (P ≤ 0.05) as compare to 400 mg/kg dose (Table 1).
2. **Tissue Biochemical Assay**

Various biochemical parameters were performed in liver, kidney and lung tissues. A significant increase was observed in the level of LPO in liver, kidney and lung after SNPs intoxication, when compared with the control group (P ≤ 0.05). Treatment with Jaggery at two different doses (400 and 800 mg/kg, p.o.) reversed the oxidative stress significantly towards control by inhibiting LPO in dose dependant manner (P ≤ 0.05). Significant reduction (P≤0.05) was seen in GSH content in liver and kidney after SNPs intoxication. Post treatment of Jaggery was very effective in restoring the glutathione content which had been substantially decreased by SNPs (Table 2). Both the doses of Jaggery improved the GSH level in liver, kidney and lung tissues. However, therapy at 800 mg/kg was very effective. In our study, significant reduction was seen in SOD, CAT, ALPase and G-6-Pase level after SNPs administration (P ≤ 0.05) (Tables 2-3). Analysis of variance showed significant recovery in the level of SOD, CAT, G-6-Pase and ALPase enzymes after administration of Jaggery at both the doses (400 and 800 mg/kg), but most effective restoration was observed at 800 mg/kg dose. No adverse effects were found in the tissue biochemical parameters after per se treatment of Jaggery.

Table 1

Effect of Jaggery on various blood biochemical variables against SNPs induced alterations

<table>
<thead>
<tr>
<th>Treatments</th>
<th>AST (IU/L)</th>
<th>ALT (IU/L)</th>
<th>LDH (IU/L)</th>
<th>SALP (IU/L)</th>
<th>Albumin (g/dl)</th>
<th>Urea (mg/dl)</th>
<th>Uric acid (mg/dl)</th>
<th>Creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>66.0 ± 3.6</td>
<td>45.0 ± 2.4</td>
<td>44.0 ± 2.4</td>
<td>192 ± 10.6</td>
<td>3.7 ± 0.20</td>
<td>27.0 ± 1.4</td>
<td>1.7 ± 0.093</td>
<td>0.18 ± 0.009</td>
</tr>
<tr>
<td>Group II</td>
<td>66.8 ± 3.6</td>
<td>45.8 ± 2.5</td>
<td>42.8 ± 2.3</td>
<td>190 ± 10.5</td>
<td>3.6 ± 0.19</td>
<td>28.0 ± 1.5</td>
<td>1.8 ± 0.099</td>
<td>0.19 ± 0.010</td>
</tr>
<tr>
<td>Group III</td>
<td>107 ± 5.9</td>
<td>111 ± 6.1</td>
<td>95.0 ± 5.2</td>
<td>301 ± 16.6</td>
<td>2.5 ± 0.13</td>
<td>89.0 ± 4.9</td>
<td>3.2 ± 0.176</td>
<td>0.42 ± 0.023</td>
</tr>
<tr>
<td>Group IV</td>
<td>108 ± 4.8*</td>
<td>111 ± 6.1*</td>
<td>95.0 ± 5.2</td>
<td>301 ± 16.6*</td>
<td>2.5 ± 0.13*</td>
<td>89.0 ± 4.9*</td>
<td>3.2 ± 0.176*</td>
<td>0.42 ± 0.023*</td>
</tr>
<tr>
<td>Group V</td>
<td>78.0 ± 4.3*</td>
<td>62.0 ± 3.4*</td>
<td>59.0 ± 3.2*</td>
<td>233 ± 12.8*</td>
<td>3.3 ± 0.18*</td>
<td>48.0 ± 2.6*</td>
<td>2.1 ± 0.116*</td>
<td>0.25 ± 0.013*</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>F-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6*</td>
</tr>
</tbody>
</table>

Data are mean ± S.E.; N = 6; ANOVA *= Significant, # SNPs vs Control; * SNPs + Therapy vs SNPs at P≤0.05. Abbreviations: SNPs= Silica nanoparticles; AST= Aspartate aminotransferase; ALT= Alanine aminotransferase; LDH= Lactate dehydrogenase; SALP= Serum alkaline phosphatase; %= Percent protection.

Table 2

Effect of Jaggery treatment on various tissue biochemical variables after SNPs induced alterations

<table>
<thead>
<tr>
<th>Treatments</th>
<th>LPO (n mole of MDA/mg protein)</th>
<th>GSH (µ mole/g)</th>
<th>G-6-Pase (µ mole Pi/ min/g liver)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liver</td>
<td>Kidney</td>
<td>Lung</td>
</tr>
<tr>
<td>Group I</td>
<td>0.31 ± 0.01</td>
<td>0.44 ± 0.02</td>
<td>0.48± 0.02</td>
</tr>
<tr>
<td>Group II</td>
<td>0.33 ± 0.01</td>
<td>0.46 ± 0.02</td>
<td>0.50± 0.02</td>
</tr>
<tr>
<td>Group III</td>
<td>0.59± 0.03*</td>
<td>1.70± 0.09*</td>
<td>0.90± 0.04*</td>
</tr>
<tr>
<td>Group IV</td>
<td>0.46± 0.02*</td>
<td>1.10± 0.06*</td>
<td>0.69± 0.03*</td>
</tr>
<tr>
<td>Group V</td>
<td>0.41± 0.02*</td>
<td>0.90± 0.04*</td>
<td>0.61± 0.03*</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.7*</td>
</tr>
</tbody>
</table>

Data are mean ± S.E.; N = 6; ANOVA *= Significant, # SNPs vs Control; * SNPs + Therapy vs SNPs at P≤0.05. Abbreviations: SNPs= Silica nanoparticles; LPO= Lipid per oxidation; GSH= Reduced Glutathione; G-6-Pase= Glucose-6-phosphatase; %= Percent protection.
With the rapid development and extensive application of silica nanoparticles in biomedical and biotechnological fields, the toxicity of SNPs attracts more attention. Studies demonstrated that SNPs induced toxicological effects mainly on lung, liver, spleen and kidney tissues. ALT, AST, ALP and LDH are well known diagnostic indicators of hepatic injury. Increased levels of these enzymes in serum of SiO2 nanoparticles treated animals (6 weeks exposure) have been attributed to hepatic structural damage because these enzymes are normally localized to the cytoplasm and are released into the circulation after cellular damage has occurred. Our result demonstrated that Jaggery (400 and 800 mg/kg) showed significant recoupment in these enzymes activity thus revealing that Jaggery preserved stability surface radicals and sustained release of ROS triggers extensive cellular damage. ROS generated by the SNPs surface can induce cell membrane damage via lipid peroxidation that may subsequently lead to increased cellular permeability. The depletion of antioxidant defences and/or rise in free radical production deteriorates the prooxidant balance, leading to oxidative stress-induced cell death. Thiobarbituric acid reactive substances (TBARS) were one of the main LPO products; its elevated levels could reflect the degree of LPO injury in liver, kidney and lung tissues. The increase in TBARS level in SNPs treated rats indicates enhanced peroxidation leading to a failure of the antioxidant defence mechanism to prevent formation of excess free radicals. Treatment with Jaggery prevented significantly LPO either directly or through GSH by scavenging the free radicals. These results indicate the potential electron donating ability of SNPs to scavenge free radicals and the antioxidant activity of jaggery.

DISCUSSION

Table 3

<table>
<thead>
<tr>
<th>Treatments</th>
<th>CAT (µmole of H2O2/min/mg protein)</th>
<th>SOD (µmole/min/mg protein)</th>
<th>ALPase (mg Pi /100g/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liver</td>
<td>Kidney</td>
<td>Lung</td>
</tr>
<tr>
<td>Group I</td>
<td>66.0 ± 3.6</td>
<td>78.0 ± 4.3</td>
<td>72.0 ± 3.9</td>
</tr>
<tr>
<td>Group II</td>
<td>64.6 ± 3.5</td>
<td>77.1 ± 4.2</td>
<td>70.7 ± 3.9</td>
</tr>
<tr>
<td>Group III</td>
<td>41.0 ± 2.2</td>
<td>40.0 ± 2.2</td>
<td>41.0 ± 2.2</td>
</tr>
<tr>
<td>Group IV</td>
<td>53.0 ± 2.9</td>
<td>59.0 ± 3.2</td>
<td>56.0 ± 3.0</td>
</tr>
<tr>
<td>Group V</td>
<td>58.0 ± 3.2</td>
<td>67.0 ± 3.7</td>
<td>62.0 ± 3.4</td>
</tr>
<tr>
<td></td>
<td>62.0 ± 3.4</td>
<td>71.0 ± 1.0</td>
<td>67.7 ± 3.4</td>
</tr>
</tbody>
</table>

ANOVA F-Value 12.3* 22.2* 16.6* 16.3* 24.1* 8.91* 7.13* 8.73* 23.6*

Data are mean ± S.E.; N = 6; ANOVA @= Significant, # SNPs vs Control; * SNPs + Therapy vs SNPs at P≤ 0.05.

Abbreviations: SNPs= Silica nanoparticles; CAT= Catalase; SOD= Superoxide dismutase; ALPase= Alkaline phosphatase; % = Percent protection.
donating ability of Jaggery. These findings are in support with results of earlier investigations. Damage to the cellular membrane from LPO also leads to decreases in the activity of enzymes bound to the endoplasmic reticulum enzyme G-6-Pase. Our study has shown that subchronic exposure to SNPs in rats significantly decreased G-6-pase activity in liver, which might be due to the membrane’s fragility and the permeability of the organs. Therapy with Jaggery at both the doses significantly restored the metabolic enzyme activities, which indicates improved physiological functions in liver tissue. Glutathione is one of most abundant tripeptide antioxidants which protect biomolecules from free radical-mediated damage. Decreased GSH levels in SNPs administered rats might be due to either reduced GSH synthesis or increased utilization of glutathione in the detoxification process against SNPs toxicity. Treatment with Jaggery (400 and 800 mg/kg) restored the GSH levels in liver, kidney and lung. Jaggery at two different doses reversed SNPs induced chain of events possibly via better maintaining the redox equilibrium within the body and may be due to an initial reduction in tissues peroxidative activities, thereby leading to restoration of GSH content. It is known that SOD and CAT constitute a mutually supportive team of antioxidant enzymes, which provides a defence system against ROS. In this study the activity of SOD and CAT decreased significantly in SNPs treated rats. The decline in these enzymes levels can be explained by the fact that excessive superoxide anions may inactivate SOD. Hence, inactivation of the H$_2$O$_2$ scavenging enzyme CAT. Treatment with Jaggery effectively prevented the decrease in SOD and CAT activities because Jaggery might be well absorbed in liver, kidney and lung and could suppress SNPs induced ROS and maintained cellular antioxidants pool.

It is widely accepted that SiO$_2$-induced cytotoxicity is due to the disruption of phagolysosomal membrane integrity. After phagocytosis of SiO$_2$, reactive particle surfaces may interact with phagolysosomal membranes leading to the release of lysosomal enzymes into the cytosol and cell death. Lysosomes contribute to caspase activation and apoptosis in an in vitro model of silica-induced apoptosis. SNPs were shown to induce lysosomal permeability and apoptosis in a response that required an acidic lysosomal environment, lysosomal cathepsin D activity and lysosomal acidic sphingomyelinase activity. This might be the possible cause of reduction of ALPase in liver, kidney and lung after silica exposure. Treatment with Jaggery might help in improvement of membrane integrity and thus, maintained lysosomal enzymes. The silanol (SiOH) group present on the surface of silica particle forms H-bond with oxygen and nitrogen group found in the biological cell membranes which may subsequently lead to oxidative stress, chronic inflammation, loss of membrane structure, lysosomal leakage and cellular damage. Thus present data suggest that exposure of SNPs leads to cellular morphological modifications and oxidative stress as indicated by elevation of intracellular ROS and TBARS and depletion of GSH. The therapeutic protective potential of Jaggery can be attributed to the presence of -OH and -H groups of its polyphenolic components. It is analyzed that these groups are involved in loss of lipid peroxyl radicals in the cellular membrane and it may directly combine with free radicals and hinder the formation of these radicals. It may help to maintain the redox equilibrium within the body to minimize the molecular and cellular oxidative damage caused by SNPs. An important ingredient of Jaggery is vitamin C; a non-enzymatic antioxidant can mobilize and up regulate antioxidant capacity of cell to neutralize excessive free radicals. Our study verifies for the first time, the therapeutic effects of Jaggery against SNPs exposure as evidenced by blood and tissue biochemical parameters and histological studies. Thus, looking in to a variety of biological properties of Jaggery, this study advocates the protective value of Jaggery against SNPs induced toxicity. To the best of our knowledge detailed scientific investigation on Jaggery as counter measure to SNPs induced toxicity has not been done yet.
CONCLUSION

It can be concluded that the aqueous extract of Jaggery possesses protective activity against silica nanoparticles intoxication in hepatic renal and pulmonary tissues. This may be due to the stabilizing effect on the membrane of cells by the antioxidant effect of the Jaggery, which consequently helps to maintain the structural and functional integrity of the cells.

ACKNOWLEDGMENT

Authors are thankful to Jiwaji University, Gwalior (M.P.) for laboratory facilities and Madhya Pradesh Council for Science and Technology, Bhopal, India for financial assistance.

CONFLICT OF INTEREST

The authors declare that they share no conflict of interest regarding this study and manuscript.

REFERENCES

35. Yuan LP, Chen FH, Ling L, Dou PF, Bo H and Zhong MM., Protective effects of total flavanoids of Bidens pilosa L. (TFB)

