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Purpose of review

Oxidative damage is involved in cardiovascular diseases.

Intervention with a-tocopherol, ascorbic acid and

b-carotene does not appear to reduce pathogenesis. The

purpose of this review is to describe alternative antioxidant

mechanisms that may be involved.

Recent findings

Antioxidants with different chemical properties may

recharge each other in an antioxidant network. The total

antioxidant content of dietary plants may therefore be a

useful tool for testing the ‘antioxidant network’ hypothesis.

Several berries, fruits, nuts, seeds, vegetables, drinks and

spices have been found to be high in total antioxidants.

Initial studies in animals and humans are supportive as to

the beneficial effects of dietary plants rich in total

antioxidants. Additionally, antioxidants and other plant

compounds may also improve the endogenous antioxidant

defence through induction of antioxidant and phase 2

enzymes. Dietary plants rich in such compounds include

broccoli, Brussel sprouts, cabbage, kale, cauliflower,

carrots, onions, tomatoes, spinach and garlic.

Summary

Although initial studies have indicated that antioxidants may

reduce oxidative stress, human intervention studies do not

support a beneficial effect of antioxidant supplements.

Further research is needed to clarify whether other plant

antioxidants, plants rich in a combination of antioxidants, or

plant compounds that induce the endogenous antioxidant

defence can reduce pathogenesis of cardiovascular

disease and other oxidative stress-related diseases.
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Introduction
The collection of solar energy and its conversion into

chemical energy in plants would not have been possible

without a mechanism that effectively eliminates hazar-

dous excess energy and prevents oxidative damage of the

plant cell [1]. Plants are therefore, in general, high in

numerous antioxidant compounds such as polyphenols,

carotenoids, tocopherols, tocotrienols, glutathione and

ascorbic acid, as well as enzymes with antioxidant activity

[1,2�]. Animal cells have a much more limited de-novo

antioxidant production. Oxidative damage can therefore

accumulate in animal cells when the critical balance

between generation of reactive oxygen species (ROS)

and reactive nitrogen species (RNS), and antioxidant

defence is unfavourable. Compelling evidence demon-

strates that such oxidative damage is involved in the

pathogenesis of cardiovascular diseases [3�–5�].

A diet rich in fruits and vegetables reduces the risk of

cardiovascular diseases and some other diseases, and

most countries have developed recommendations for

an increased intake of fruit and vegetables [6,7]. It is

perhaps a surprise for many that the mechanisms and the

compounds involved in the protective effects of fruits and

vegetables have not been established. Oxidative stress

reduction by dietary antioxidants has been regarded by

many as the most likely candidate. This hypothesis has

however been difficult to prove. While many studies have

demonstrated beneficial effects in experimental model

systems [4�,6,8–10], and epidemiological studies [6,

10,11�], the final proof – the randomized intervention

trials – have not been at all supportive [12�–15�].

These data may suggest that antioxidants do not con-

tribute to the beneficial effects of fruits and vegetables.

This conclusion is, however, premature. The complex

chemistry and biology of antioxidants and oxidative stress

have been largely neglected in many studies. The pur-

pose of this review is to provide some background
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chemistry and biology to promote the investigation

of alternative antioxidant mechanisms that may be

involved.

The chemistry of oxidative stress
ROS and RNS (including free radicals) are formed as a

result of normal cellular metabolic reactions [16]. Such

molecules are also formed as a consequence of diseases

(e.g. inflammations) and from tobacco smoke, environ-

mental pollutants, natural food constituents, drugs,

ethanol and radiation. If not eliminated by antioxidants,

these highly reactive compounds will react with and

potentially alter the structure and function of several

cellular components, such as cell membranes, lipoproteins,

cellular proteins, carbohydrates, RNA, and DNA [16,17].

Redox reactions

The type of reaction ROS and RNS are engaged in is

called a reduction–oxidation (redox) reaction. In general,

redox reactions are at the core of our metabolic machinery

as well as the source of energy driving all forms of life.

Plants convert solar energy into reduced molecules.

Then, living cells obtain energy to maintain themselves

by oxidizing reduced molecules through many intermedi-

ate steps into oxidized forms of matter such as carbon

dioxide and water [16,17]. The energy involved in redox

reactions comes from the movement of electrons from

oxidizable organic molecules to oxygen. Thus, in redox

reactions there is a transfer of electrons from one reactant

to another. The loss of electrons from a substance is

called oxidation; the addition of electrons to another

substance is called reduction. Not all redox reactions

involve complete transfer of electrons from one substance

to another; some change the degree of electron sharing in

the covalent bond. A redox reaction that relocates elec-

trons closer to oxygen releases chemical energy that can

be put to work [17].

Reduction potential

The energy of molecules that participate in redox

reactions can be interpreted by their reduction potential

[17]. Because of their reactivity, most ROS and RNS

undergo simple first and second-order reactions. The

one-electron reduction potential can therefore be used

to predict the direction of such reactions. In this hier-

archy, the oxidized species is capable of stealing an

electron or hydrogen atom from any reduced species

below it in the list [17,18]. The most oxidizing radical

that is likely to arise in a biological system is

the hydroxyl radical (standard reduction potential of

the HO�, Hþ/H2O couple is about 2300 mV), which

can steal an electron from almost any molecule [18].

An oxidized molecular species with a high reduction

potential is called an electrophile. Importantly, several

antioxidants form reactive electrophiles (‘antioxidant

radicals’) when they react with a ROS or RNS
[17,18]. Thus, although the chemical energy has been

reduced compared with the original free radical, the

‘antioxidant radical’ may still have substantial reduction

potential which can be utilized in damaging reactions.

Activation energy

Activation energy is the energy needed to move an

electron out of its orbit. Only the barrier of activation

energy holds back the flood of electrons to lower energy

states. Without this barrier, reduced molecules would

spontaneously react with oxygen and release energy as

heat in an enormous explosion. Due to the activation

energy, most molecules therefore do not react when they

collide, even if the potential product would have been

energetically favourable. An important characteristic of

ROS and RNS is that such molecules have quite low

activation energy and can therefore react when they

collide with other stable molecules [17].

Enzymatic versus nonenzymatic reactions

The chemistry of life is organized into metabolic path-

ways controlled by enzymes whose sole objective is to

reduce activation energy of certain specific reactions

characteristic of that organism. With the help of enzymes,

a cell systematically degrades complex reduced organic

molecules to simpler oxidized waste products. The oxi-

dative damage that causes oxidative stress is not due to

such enzymatic reactions. Oxidative stress is, however,

due to nonenzymatic reactions involving ROS and RNS

with low activation energy. If the reaction is energetically

favourable, ROS and RNS will react with most molecules

with which they collide [19].

Definitions of oxidative stress and antioxidants

The term ‘oxidative stress’ is today one of the most

popular terms in biomedicine: more than 10 papers deal-

ing with oxidative stress are published daily. The term is

almost never defined and is probably misused quite often.

From the considerations above, I would therefore like to

suggest a new definition of oxidative stress: ‘oxidative

stress is a condition that is characterized by the accumu-

lation of nonenzymatic oxidative damage to molecules

that threatening the normal function of the cell or the

organism’.

It is important to note that many enzymes can indirectly

cause oxidative stress, but these enzymes do not produce

oxidative stress by themselves: they produce ROS and

RNS that subsequently can cause oxidative damage. The

oxidative damage is always due to nonenzymatic redox

reactions.

The term ‘antioxidant’ cannot be defined purely chemi-

cally; it is always related to the cellular or organismal

context, and to oxidative stress. Furthermore, every

molecule can be both an oxidant and a reductant; this
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is determined by the reduction potential of the molecule

with which it reacts. Thus, I suggest that antioxidant and

antioxidant enzymes should be defined as follows: ‘an

antioxidant is a redox active compound that limits oxi-

dative stress by reacting nonenzymatically with a reactive

oxidant’; ‘an antioxidant enzyme is a protein that limits

oxidative stress by catalysing a redox reaction with a

reactive oxidant’.

Antioxidant supplements apparently do not
protect against cardiovascular disease
It was initially thought that supplementation of antiox-

idant such as ascorbic acid, a-tocopherol, b-carotene

would neutralize ROS or RNS and thereby avoid any

oxidative damage. The first strategy to test for the

antioxidant hypothesis was therefore to study the ability

of these to inhibit oxidative damage/stress in cell-free

experiments (e.g. oxidation of LDL), cell cultures

(e.g. cell signalling mediated by oxidized LDL), and

experimental animals (e.g. atherosclerotic models based

on null mutations of certain apolipoproteins or lipo-

protein receptors). Such experiments have generated

many positive results [4,6,8–10]. In addition, observa-

tional epidemiological studies do in general support the

hypothesis that foods rich in these antioxidants are cor-

related with reduced cardiovascular disease [6,10,11�].

Large randomized double-blind intervention trials that

have been conducted to finally prove the antioxidant

hypothesis have not been supportive. Indeed, supple-

mentation with antioxidants has often resulted in no

effect or even adverse disease outcomes. Recently, sev-

eral reviews and metaanalyses have concluded that there

is now a strong body of evidence indicating that there is

no beneficial effect of supplemental a-tocopherol, and

probably also of supplemental b-carotene and ascorbic

acid [12�–15�].

One possible explanation may be that the beneficial

health effect is due to other antioxidants in fruits and

vegetables: carotenoids are ubiquitous in the plant king-

dom, and as many as 1000 naturally occurring variants

have been identified [20]. Phenolic compounds are

synthesized in large varieties belonging to several mole-

cular families such as benzoic acid derivatives, flavonoids,

proanthocyanidins, stilbenes, coumarins, lignans and lig-

nins. Over 8000 plant phenols have been isolated [20].

Plant phenols are antioxidants by virtue of the hydrogen-

donating properties of the phenolic hydroxyl groups.

In addition, the vitamin E family consists of a, b, g

and d-tocopherols, and a, b, g and d-tocotrienols [9]. It

is a distinct possibility that some of these antioxidants,

whose role in plants is to reduce oxidative stress [1],

can do better in randomized intervention trials than

a-tocopherol, ascorbic acid and b-carotene.
A combination of antioxidants may be needed
to reduce oxidative stress
Even though there are many antioxidants in each single

dietary plant, knockout of a synthetic pathway for a single

antioxidant may case a serious injury to the plant cell [1].

Therefore, it seems likely that a mixture of different

antioxidants is needed to keep the plant cell healthy and

protected against oxidative stress. Thus, maybe a com-

bination of a variety of different antioxidants is needed to

keep the animal cells protected from oxidative stress.

Antioxidant network

When antioxidants react with ROS or RNS, the antiox-

idant is itself often transformed into an ‘antioxidant

radical’. Although the resulting radical has a reduced

ability to react with vital cellular targets, it can still cause

damage [18]. The ‘antioxidant radical’ needs to react with

another antioxidant to bring the reduction potential and

the reactivity further down. These antioxidant reactions

can continue in a stepwise fashion, involving a large

number of antioxidant molecules, until the ‘antioxidant

radical’ is no longer a threat to the cell, simply because it

has been reduced to a product which does not contain

enough reduction potential to react with lipids, protein,

DNA and other important cellular molecules.

Thus, the a-tocopheroxyl radical (a-T�), which is formed

when a-tocopherol reacts with HO�, has reduced ability

to be involved in redox reactions. However, a-T� is still

quite reactive. It has been observed that a-T� can parti-

cipate in lipid peroxidation of LDL [21,22]. Accumula-

tion of a-T� or other antioxidant radicals may in fact be

one of the reasons for the adverse effects seen in some

of the randomized intervention trials using antioxidant

supplements.

Normally, however, the a-T can be regenerated by the

reaction of a-T� with ascorbic acid, a reaction that gen-

erates the ascorbyl radical [18,23]. The reduction poten-

tial hierarchy demonstrates that ascorbic acid can

regenerate a-tocopherol from the a-tocopheryl radical,

but not vice versa.

The best protection for the animal cell, as for the plant cell,

may be obtained by a combination of antioxidants. These

antioxidants with different chemical properties may

recharge each other in an integrated manner, and may

be needed for proper protection of all compartments in a

cell or an organism. Such interactions have indeed been

proven in vitro for a-tocopherol, a-tocotrienol, ascorbic

acid, lipoic acid and thiols by Packer and colleagues

[23], but the concept could have much broader validity.

Identification of dietary plants rich in total antioxidants

The total concentration of redox active compounds with

energy above a selected redox potential which is present
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Table 1. Total antioxidant values in foods as determined by the

ferric reducing ability of plasma assay (mmol/100 g)

Dietary supplements (range 0.1–1364.1)
Body Wise Right Choice AM 530.6
Medox, anthoxyanins 455.9
Ocuvite ekstra 281.1
GNC Ultra Mega Gold 235.6
St John’s Wort 118.5
Centrum Silver 40.6
Ginkgo Biloba 35.9
Theragran 30.0
Women’s Ultra mega 11.3
Metamucil Orange 0.6
Chondroitin sulfate 0.1

Herbs and spices (range 0.3–465.3)
Clove 465.3
Allspice 101.5
Cinnamon 98.4
Rosemary 66.9
Oregano 45.0
Curry 13.0
Coriander 2.8
Cardamom 0.5

Berries (range 1.0–39.5)
Dog rose 39.5
Blueberry 8.2
Blackberry 5.1
Raspberry 3.1
Strawberry 2.2
Sweet cherry 1.0

Nuts and seeds (range 0.2–21.0)
Walnut 21.0
Sunflower seed 5.4
Sesame seed 1.2
Hazelnut 0.5
Almond 0.3

Chocolate (range 0.4–13.4)
Dark chocolate (70%) 13.4
Milk chocolate 1.8

Fruits (range 0.1–11.3)
Pomegranate 11.3
Red grape 2.4
Orange 1.1
Lime 0.7
Apple 0.3
Pear 0.2
Banana 0.2
Watermelon 0.0

Vegetables (range 0.0–3.8)
Kale 2.3
Red cabbage 1.9
Brussel sprouts 1.1
Spinach 1.0
Cauliflower 0.2
Squash 0.1
Zucchini 0.0

Wine (range 0.4–3.7)
Montepulciano, red 3.7
Canepa, red 2.8
La Buvette, red 2.4
Muscato, white 0.4
Liebfraumilch, white 0.4
Caliterra, white 0.3

Fruit juices (range 0.1–3.2)
Grape, blue 1.6
Orange 0.8
Apple 0.6
Pineapple 0.2

(continued overleaf )
in dietary plants may be a useful tool for testing the

antioxidant network hypothesis. Although, such an assay

may pick up many reductants that are not absorbed by

humans, it will identify many antioxidant-rich dietary

plants which are very useful candidates when testing the

antioxidant network hypothesis.

Initial studies have used different methods to assess total

antioxidant concentration or capacity in dietary plants:

the 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic

acid (Trolox) equivalent antioxidant capacity (TEAC)

assay of Miller et al. [24], the oxygen radical absorbance

capacity (ORAC) assay of Glazer’s [25] and Cutler’s

laboratories [26], and the ferric reducing ability of

plasma (FRAP) assay of Benzie and Strain [27]. The

TEAC and the ORAC assays are based on the antiox-

idant’s ability to react with free radicals, while the FRAP

assay measures the reduction of Fe3þ (ferric iron) to Fe2þ

(ferrous iron).

An appropriate assay for measuring total dietary anti-

oxidants should be based on a reduction potential that is

below the characteristic reduction potential for oxida-

tive damage of lipid, proteins, DNA, and other cellular

targets. While these reduction potentials are largely not

known, and may vary across cellular targets, the reduc-

tion potential of the major cellular endogenous antiox-

idant, glutathione (GSH), is likely to indicate a ‘safe’

level. The standard reduction potential for the GSSG/

2GSH couple is –264 mV. The actual cellular redox

state of the GSSG/2GSH couple is slightly higher (about

–200 mV) [28]. Thus, a useful cut-off value for deter-

mining total antioxidants relevant in a cellular context

should probably be around –200 mV. The FRAP assay is

based on a reduction potential slightly above –200 mV,

while the ORAC and TEAC reactions are slightly

below. Thus, all three assays have probably an

appropriate reduction potential for picking up the

most important antioxidants. However, ORAC and

TEAC, but not FRAP, detect GSH or protein thiols.

This is an advantage of FRAP since these molecules are

for a large part degraded in the intestine and poorly

absorbed.

A total antioxidant assay should have little selectivity and

pick up all relevant reductants above the characteristic

reduction potential. A complex molecule – but not a

symmetrical molecule – must collide with the reductant

in a proper orientation in order to react. Since it is more

likely that a small symmetrical molecule such as Fe3þ will

react when it collides with the reductant than the more

complex free radicals used in the ORAC and TEAC

assays, the FRAP assay is less selective than the other

two assays. ORAC and TEAC may, however, be more

useful when analysing reactivity against specific free

radicals.
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Table 1. (continued )

Coffee (range 1.6–3.0)
Black coffee, filter 2.8
Black coffee, boiled 2.2
Black coffee, instant 1.7

Tea (range 0.8–2.5)
Green tea 2.5
Black tea 0.8

Cereals (range 0.0–1.1)
Barley, wholemeal flour 1.1
Oats, rough oatmeal 0.6
Barley, white flour 0.6
Rye, wholemeal flour 0.5
Wheat, wholemeal flour 0.3
Rye, white flour 0.2
Wheat, white flour 0.1

Dairy produce (range 0.0–1.0)
Butter 0.7
Cheese 0.1
Milk 0.0

Meat (range 0.0–0.1)
Moose 0.1
Calf 0.0
Pork 0.0
Ox 0.0

The table shows a range of total antioxidants found in various food
groups. Selected foods are also shown in each food group. As values
may vary considerably for each food based on site of origin, manufac-
turer, botanical species, varieties etc., typical values are shown. The
table presents some examples of total antioxidant values of dietary plants
published in Refs [29,30�], and values to be published elsewhere
(Blomhoff, unpublished results).
Another advantage of the FRAP method is its ability for

absolute quantitative determination of the amounts of

total antioxidants (or reductants) in samples. Thus, values

can be used to calculate the total intake of antioxidants

and the contribution of various food groups for total

dietary intake. The FRAP assay is also the only assay

that directly measures total reductants in a sample.

In order to test the antioxidant network hypothesis we

have used the FRAP assay to generate a ‘total antioxidant

table’ which contains more than 2000 food items collected

from all over the world [29,30�] (Blomhoff et al., unpub-

lished data). We used a workup procedure that allowed

analysis of both water-soluble and fat-soluble antioxidants

[29,30�] (Blomhoff et al., unpublished data).

Foods identified by the FRAP assay as containing high

levels of total antioxidants include several berries (such as

blueberries, blackberries, strawberries and raspberries),

fruits (pomegranates, grapes and oranges), nuts (walnuts),

seeds (sunflower seeds), vegetables (kale, red cabbage

and pepper), drinks (green tea, red wine and coffee) and

spices (oregano, sage, peppermint, garden thyme, lemon

balm, clove, allspice and cinnamon) (Table 1) [29,30�]

(Blomhoff et al., unpublished data). Similar but some-

what varying results are also obtained in other smaller

studies using the FRAP, ORAC and TEAC assays

[31–33,34�,35,36].
With these results available, we are now able to test

whether dietary plants rich in total antioxidants may

protect against oxidative stress-related diseases such as

cardiovascular disease. It should be kept in mind that

these analyses include many hundreds, maybe thousands,

of different antioxidant compounds belonging to several

molecular families. These antioxidants may have very

different absorption in humans, and their transport to,

and within, tissues is likely to vary dramatically. It would

therefore be interesting to test whether total antioxidants

in specific botanical families or food groups, or specific

combinations, are able to contribute to an antioxidant

network.

Antioxidant-rich dietary plants protect against

cardiovascular disease in initial studies

Some initial experimental dietary studies are supportive

as to the beneficial effect of dietary plants rich in anti-

oxidants. Pomegranate is the fruit containing the most

antioxidants (about 11.5 mmol/100 g). Aviram and collea-

gues [37,38] have recently demonstrated that pomegra-

nate juice administration to apolipoprotein E-deficient

atherosclerotic mice reduced macrophage lipid peroxida-

tion, decreased LDL susceptibility to oxidation, aggrega-

tion and retention, cellular cholesterol accumulation and

development of atherosclerosis. In small-scale human

studies they observed that pomegranate juice increased

the activity of serum paraoxonase (an HDL-associated

esterase that can protect against lipid peroxidation),

inhibits serum angiotensin converting enzyme activity

and reduces systolic blood pressure in hypertensive

patients [37,39]. Finally, pomegranate juice consumption

for 3 years by patients with carotid artery stenosis

reduced common carotid intima-media thickness, blood

pressure and LDL oxidation [40�].

Walnuts contain even more antioxidants (about

21.0 mmol/100 g). Five human short-term walnut inter-

vention trials, involving individuals at risk of coronary

heart disease, consistently demonstrated that walnuts, as

part of a heart-healthy diet, lower blood cholesterol con-

centrations [41,42]. These results are supported by several

large prospective observational studies in humans, all

demonstrating a dose–response-related inverse associa-

tion of the relative risk of coronary heart disease with

frequent daily consumption of small amounts of nuts,

including walnuts [43]. In addition, Ros et al. [44�] recently

demonstrated that a walnut diet improves endothelial

function in hypercholesterolemic individuals. In March

2004, the US Food and Drug Association accepted the

following qualified health claim on walnuts: ‘Supportive

but not conclusive research shows that eating 1.5 ounces

per day of walnuts, as part of a low saturated fat and low

cholesterol diet and not resulting in increased caloric

intake, may reduce the risk of coronary heart disease’

[45].
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Figure 1. In-vivo imaging of nuclear factor kB response element

(a) and c-glutamylcysteine synthethase promote (b) activity in

luciferase based reporter mice

Imaging of transgenic mice was performed with an ultra-sensitive camera
consisting of an image intensifier coupled to a CCD camera (C2400-47
Hamamatsu, Japan). For details, see Refs [46�,49��,53�,54].
These preliminary studies are supportive of a beneficial

effect of dietary plants rich in antioxidants. The overall

evidence is, however, limited, and much more work is

needed.

Fruits and vegetables may contain
compounds that induce the endogenous
antioxidant defence
A complex endogenous antioxidant defence system has

developed through evolution to counteract oxidative

damage. The antioxidant defence has both nonenzymatic

(e.g. GSH and thioredoxin) and enzymatic components

that prevent radical formation, remove radicals before

damage can occur, repair oxidative damage, eliminate

damaged molecules, and prevent mutations [2�,16,21,

28,46�]. The antioxidant enzymes include superoxide

dismutases for the elimination of the superoxide radicals,

and catalases and glutathione peroxidases for the elimina-

tion of hydrogen peroxide and organic peroxides. Addi-

tionally, detoxification enzymes, such as members of the

glutathione S-transferase family, g-glutamyl cysteine

synthetase and NAD(P)H : quinone reductase [1,16],

are also essential in endogenous antioxidant defence.

These enzymes are generally referred to as phase 2

enzymes because they catalyse conversion of toxic meta-

bolites to compounds that are more readily excreted.

Paul Talalay and colleagues [47,48] have demonstrated

that glucosinolate breakdown products from brassica

vegetables (such as the isothiocyanate sulphoraphane)

and several other sulphur-containing plant compounds

can induce antioxidant and phase 2 enzymes. Allium

vegetables contain a number of other sulphur-containing

compounds (e.g. cysteine sulphoxides and dithiolthiones)

that may also induce phase 2 enzymes. Like the gluco-

sinolates, the active compound from allium vegetables

results from enzymatic degradation of the plant com-

pounds. Dietary plants rich in compounds that induce

antioxidant defence enzymes include broccoli, Brussel

sprouts, cabbage, kale, cauliflower, carrots, onions, toma-

toes, spinach and garlic [47,48].

The molecular mechanism by which these plant com-

pounds can induce phase 2 and antioxidant enzymes is

likely, at least partly, to be mediated by effects on protein

kinases (e.g. phosphoinositide 3-kinase (PI3 kinase),

protein kinase B (PKB, also termed Akt), extracellular

signal-regulated kinase (ERK), protein kinase CK2 (for-

merly termed ‘casein kinase 2’) and 50-AMP-activated

protein kinase (AMPK)) and transcription factors (e.g.

nuclear factor kB (NF-kB), activator protein-1 (AP-1),

aryl hydrocarbon receptor/dioxin receptor (AhR) and NF-

E2-related nuclear factors (Nrf1 and Nrf2) [46�,49��].

The Nrf transcription factors which bind to antioxidant

response elements/electrophilic response elements are

central in such induction [46�,50��].
Interestingly, some of these biological activities seem to

be related to redox active plant compounds (i.e. antiox-

idants). For example, the laboratories of René V. Ben-

sasson and Paul Talalay have recently found that the

tendency of certain plant compounds to release electrons

correlates linearly with their potency in inducing the

activity of NAD(P)H : quinone reductase [50��,51��,52].

Thus, the reduction potential of the plant compound

determines its inducer potency.

These data suggest that some plant compounds (but not

a-tocopherol, ascorbic acid and others) may have a dual

role in supporting the antioxidant defence. First, the

antioxidant can donate an electron to a ROS or RNS

in a classical redox reaction. Then, the antioxidant radical

which is formed in the reaction may additionally activate

gene expression of antioxidant and phase 2 enzymes.

Noninvasive imaging of phytochemical modulated gene

expression

Most of the studies demonstrating transcriptional regula-

tion of phase 2 and antioxidant defence genes by plant

compounds have been conducted in cell culture exp-

eriments. Therefore, we have developed transgenic

reporter mouse models containing complete promoters

or response elements coupled to the luciferase gene

(Fig. 1) to test the hypothesis in vivo [46�,49��,53�,54].

The g-glutamylcysteine synthetase heavy (GSHh) sub-

unit promoter was selected (Fig. 1B) because it contains

response elements for transcription factors such as NF-

kB, AP-1 and Nrf1, and the gene product is an important

phase 2 enzyme. Our initial data show that antioxidant-

rich berries induce GCSh gene expression in brain and

muscle [53�]. I believe such transgenic reporter models,

which allow noninvasive imaging of gene expression in
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living mice, will be a useful tool to elucidate the ability of

dietary plants to induce antioxidant and phase 2 enzymes

in vivo.

Conclusion
Although experimental studies in cell cultures and ani-

mals have indicated that antioxidants such as b-carotene,

ascorbic acid or a-tocopherol may reduce oxidative stress,

human intervention studies do not support a beneficial

effect. Governmental and nongovernmental organiza-

tions such as the US Food and Drug Administration

[55], the US Institute of Medicine (Dietary Reference

Intakes) [56], the American Heart Association [57] or the

report by the World Cancer Research Fund [6], therefore,

do not recommend intake of single or combinations of

supplemental antioxidants.

It is suggested that the total antioxidant content of diet-

ary plants may be a useful tool for testing the antioxidant

network hypothesis. Several berries, fruits, nuts, seeds,

vegetables, drinks and spices have been found to be high

in total antioxidants. Additionally, some compounds

found in brassica and allium vegetables may improve

the endogenous antioxidant defence through induction of

antioxidant and phase 2 enzymes. Further research is

needed to clarify if such dietary plants can reduce patho-

genesis related to cardiovascular disease.
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